

Quadrowulf Software and Network
Configuration Notes

By Justin Moore
August 8, 2008

Based on:
Microwulf Software and Network Configuration Notes

By Tim Brom – 5.16.2008

On this page I will be recreating what was done by Mr. Tim Brom at Calvin College with Professor Joel Adams at
this web page. I am going to try to be a bit more verbose in my description of the creation of Quadrowulf. That is
not to say that Mr. Brom's paper was not helpful, because it was indeed helpful in the inspiration, creation, and
implementation of this project. This project was not really class work related – more, I was interested in
implementing it and my professor, Dr. Hayden S. Porter, of Furman University, gave me a chance to build it for
him. It should be noted that this project uses quad-core processors versus the dual-core processors used in
Microwulf.

http://www.calvin.edu/~adams/research/microwulf/

Hardware Components

First, my hardware:

I have created a similar cluster to Tim's, except that I have 2 layers instead of four, and I'm using full ATX boards
instead of m-ATX. So, this isn't really “Microwulf,” but it's still very manageable to move around with just two
people. Right now it resides on a cart, so it’s even easier to move. See the Table 1.1 below for the part list that
accompanies this picture.

Table 1.1
Part Brand / Model Picture
Motherboard Abit IP35PRO Off Limits

Processor Intel Core2Quad Q6600

Overclocked to 3.2 Ghz

Heatsink Tuniq Tower

Thermal
Paste

Artic Silver 5

Video Card Biostar GeForce Series

6200LE [V6202EL – 63
VER:7.0]

Network
Switch

Netgear ProSafe 24-port
Gigabit Switch

Memory
(RAM)

Corsair XMS2 DDR2-800
4GB [2x2GB]

Power
Supply

Corsair VX550W Power
Supply

Network
Cards

Linksys 10/100/1000
Gigabit EG1032 PCI Cards

Hard Drive Seagate 500GB Barracuda

7200.11

CD/DVD
Drive

Sony NEC Optiarc

Network
Cable

I made them custom
lengths

Mounting
hardware

Rods/Nuts/Bolts/Washers

Plexiglas Two sheets 3/8” thick

I mention in the parts list that I've overclocked the quad cores to run at 3.2 GHz in part because some of the
additional cost accrued is because we needed additional materials to compensate the heat generated by the
overclocked processors, e.g., the snazzy Tuniq Tower heatsink and the Artic Silver thermal paste. I am going to
use pictures to walk you through the installation process of getting a new node to work properly, after all the
steps have been performed on the head node, e.g. setting up the DHCP server, NFS server, and the TFTP server.

Tim's instructions for installing the head node are great; my only modification will be that I'm now using 5
Ethernet cards on the head node instead of 3, and 4 on each diskless node instead of 2. I have also partitioned
2x as many partitions on my drive because I wanted to make sure that I can get 32bit version of everything

working before I installed the 64bit versions. (: Professor Porter uses mpiJava, which somewhat died as a
project, so we have to make sure that still works.

It appears now that I will have to leave it at the 32-bit version installed and let the next contender work with the
64-bit OS.

Note: I changed the BIOS from hard drive recognition from IDE->AHCI because of a hang problem with the
Ubuntu installation disks. If when you put the disk in, it just randomly drops to BusyBox after a long time
(failsafe) then you should either change the BIOS like I did, or pass a boot parameter to the Linux install disk
that is 'noapic' or something along those lines. Then it will work.

Diskless node installation

OK – now for the installation of a headless node. Again, I am assuming that you've already assembled the cluster
and installed the OS [I'm using Ubuntu 8.04 Desktop] on the head node (with suitable partition tables). Here we
go.

Put the Ubuntu Server 8.04 disk in the drive and reboot the head node.

:pix:

The next image should have the “YES” highlighted, but I snapped the picture and hit enter before
I realized it.

This next part is *CRUCIAL*
-- Do not install GRUB, it will overwrite what you have already done in installing the Head Node!
I just left the ‘how to update GRUB’ field blank and hit continue.

After the Install

I’m going to outline the process for one node. After you do the first node, you can either repeat all the steps,
including the installation, replacing every instance of “node1” with “node2”.

Commands for the Head Node / Master Node

sudo mkdir -p /nodes/nfs/node1

Next we need to update the fstab.
Update the fstab to reflect your new partition.

/dev/sda6 /nodes/nfs/node1 ext3 noatime 0 0

Here is my complete fstab on the Head Node / Master Node

/etc/fstab: static file system information.

<file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
/dev/sda2
UUID=1aa2ddf9-f7f4-4f11-935e-000ebde2c5cd / ext3 relatime,errors=remount-ro 0 1
/dev/sda12
UUID=a74802af-473c-46aa-bb70-90772ced1463 /home ext3 relatime 0 2
/dev/sda11
UUID=cdc7f7ec-aafc-4875-9e02-e7066e5e7c7e none swap sw 0 0
/dev/scd0 /media/cdrom0 udf,iso9660 user,noauto,exec,utf8 0 0
/dev/sda5 /nodes/nfs/node1 ext3 noatime 0 0
/dev/sda6 /nodes/nfs/node2 ext3 noatime 0 0
/dev/sda7 /nodes/nfs/node3 ext3 noatime 0 0

Mount everything in fstab by typing

sudo mount -a

If your /etc/exports file does not look like this:

/etc/exports: the access control list for filesystems which may be exported
to NFS clients. See exports(5).

Example for NFSv2 and NFSv3:
/srv/homes hostname1(rw,sync) hostname2(ro,sync)

Example for NFSv4:
/srv/nfs4 gss/krb5i(rw,sync,fsid=0,crossmnt)
/srv/nfs4/homes gss/krb5i(rw,sync)

/usr 192.168.2.0/24(ro,no_subtree_check)
/nodes/nfs/node1 192.168.2.0/24(rw,no_root_squash,sync,no_subtree_check)
/nodes/nfs/node2 192.168.2.0/24(rw,no_root_squash,sync,no_subtree_check)
/nodes/nfs/node3 192.168.2.0/24(rw,no_root_squash,sync,no_subtree_check)
/nodes 192.168.2.0/24(rw,no_root_squash,sync,no_subtree_check)
/home 192.168.2.0/24(rw,no_root_squash,sync,no_subtree_check)

Fix it. (:

We now need to add updates for the DHCP server so that it will find our new node when it boots.

For example:

host node1 {
 hardware ethernet 00:50:8D:BC:A2:32;
 fixed-address 192.168.2.5;
 option root-path "/nodes/nfs/node1";
}

Here is my complete dhcpd.conf:

Sample configuration file for ISC dhcpd for Debian

Attention: If /etc/ltsp/dhcpd.conf exists, that will be used as
configuration file instead of this file.

$Id: dhcpd.conf,v 1.1.1.1 2002/05/21 00:07:44 peloy Exp $

The ddns-updates-style parameter controls whether or not the server will
attempt to do a DNS update when a lease is confirmed. We default to the
behavior of the version 2 packages ('none', since DHCP v2 didn't
have support for DDNS.)
ddns-update-style none;
#allow booting;
#allow bootp;
option definitions common to all supported networks...
option domain-name "furman.edu";
option subnet-mask 255.255.255.0;
option domain-name-servers 156.143.128.18, 156.143.128.1;
next-server 192.168.2.1; #TFTP server
filename "/tftpboot/pxelinux.0";

subnet 192.168.2.0 netmask 255.255.255.0 {
 range 192.168.2.2 192.168.2.200;
 option domain-name-servers 192.168.2.1;
 option broadcast-address 192.168.2.255;
 option routers 192.168.2.1;
}

host node1 {
 hardware ethernet 00:50:8D:BC:A2:32;
 fixed-address 192.168.2.5;
 option root-path "/nodes/nfs/node1";
}

host node2 {
 hardware ethernet 00:50:8D:BC:9D:28;
 fixed-address 192.168.2.9;
 option root-path "/nodes/nfs/node2";
}

host node3 {
 hardware ethernet 00:50:8D:B7:71:22;
 fixed-address 192.168.2.13;
 option root-path "/nodes/nfs/node3";

}

Restart the DHCP server with:

sudo /etc/init.d/dhcp3-server restart

Now we have to make some changes to the filesystem that was created with the server installation cd, because
there are certain settings that were put in that are not correct with respect to that diskless node. For example,
the hard drive and the CD/DVDROM drive are set to mount in the node's fstab, but the node does not have
anything connected to it, so those mounts will fail.

Commands for the Headless Node

We now change root over to that new partition (we can pretend like we're loaded on Linux on that partition and
begin to make some changes to the disk, even before the diskless node gets a chance to boot)

sudo chroot /nodes/nfs/node1 /bin/bash

I get a weird situation when I try to use tab completion, so I just type out the commands in full while chrooted.

Use your favorite text editor to edit this file, I use vim – lots of people don’t like vim, but whatever.

sudo vim /etc/initramfs-tools/initramfs.conf

Look for the line that says:

BOOT=local

And then change it to:

BOOT=nfs

**Note: This next section only needs to be done on the first node install. The other nodes can use the same initrd
and vmlinuz – e.g. filesystem and kernel, respectively**

To know your kernel version run the command

uname –r

Now, just realize that the generated files of the next command will use that kernel name in their filename.

sudo update-initramfs –u

This outputs two files to the default location of /boot/initrd-img-KERNEL and /boot/vmlinuz-KERNEL. Exit
this by doing

exit

Now copy over these files with:

sudo cp /nodes/nfs/node1/boot/initrd.img-KERNEL_VERSION /tftpboot/
sudo cp /nodes/nfs/node1/boot/vmlinuz-KERNEL_VERSION /tftpboot/

Finished this part on the first node – connect back to the chroot now

sudo chroot /nodes/nfs/node1 /bin/bash

Please tell me you made use of the up arrow and didn’t re-type that command. (:

Next I create /etc/resolv.conf and put in the nameserver of the Internet connection on the head node (so that I
can have internet access through this chroot).

sudo vim /etc/resolv.conf

Place the following in the file:

nameserver ip.address.of.your.dns.server

Next, let’s make the fstab look right.

Comment out the lines that begin with UUID= and /dev/scd0 – Use the # character at the front of the line to
comment it out. Add in the following:

192.168.2.1:/usr /usr nfs defaults 0 0
192.168.2.1:/home /home nfs defaults 0 0
192.168.2.1:/nodes /nodes nfs defaults 0 0

Here is my complete fstab for node1:

/etc/fstab: static file system information.

<file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
/dev/sda5
#UUID=41b9f976-fa90-448f-9177-9929ba199aac / ext3 relatime,errors=remount-ro 0
1
#/dev/scd0 /media/cdrom0 udf,iso9660 user,noauto,exec,utf8 0 0
192.168.2.1:/usr /usr nfs defaults 0 0
192.168.2.1:/home /home nfs defaults 0 0
192.168.2.1:/nodes /nodes nfs defaults 0 0

Be sure to leave the trailing white line.
You can edit your /etc/hosts file now, or wait until you get the node up and running, whatever you fancy.

sudo vim /etc/hosts

Here’s my hosts file:
127.0.0.1 localhost
127.0.0.1 HeadOfCluster

127.0.0.1 pc0
127.0.0.1 pc1
127.0.0.1 pc2
127.0.0.1 pc3
192.168.2.5 pc4
192.168.2.6 pc5
192.168.2.7 pc6
192.168.2.8 pc7
192.168.2.9 pc8
192.168.2.10 pc9
192.168.2.11 pc10
192.168.2.12 pc11
192.168.2.13 pc12
192.168.2.14 pc13

192.168.2.15 pc14
192.168.2.16 pc15

We need to create the nodes directory – (otherwise there won't be a place to mount to)

sudo mkdir /nodes

Next we need to update the /etc/network/interfaces file so that it will automatically set up our additional
Ethernet cards properly.
NOTE I am still experiencing a weird instance where the 3rd NIC on the system takes control on boot and tries
to get the NFS mounts. This causes an error because that NIC is not supposed to be third.

Here is my /etc/network/interfaces for my node1:

This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

iface eth0 inet static
address 192.168.2.5
netmask 255.255.255.0
auto eth0

iface eth1 inet static
address 192.168.2.6
netmask 255.255.255.0

auto eth1

iface eth2 inet static
address 192.168.2.7
netmask 255.255.255.0

auto eth2

iface eth3 inet static
address 192.168.2.8
netmask 255.255.255.0

auto eth3

Finally, the Ubuntu Server installation does not come with the NFS-common utilities, which includes the
binaries necessary to mount an nfs drive. Imagine that! :\ Anyway, now that we're using chroot on the head
node and we've created the /etc/resolv.conf with the right nameserver, we can use the following:

sudo apt-get update

This will essentially tell you whether your internet is working or not, but you should see some stuff go by about
getting package lists, now run the following:

sudo apt-get install nfs-common

Choose Y to install – don't worry about the fail portion of the “portmap” starting, after all – we're only on chroot,

so the /proc directory is not mounted for this installer.

We are now finished setting up the headless node. Get out of the chroot by typing:

exit

Now we just need to create the proper file in the pxelinux.cfg directory inside of /tftpboot with the MAC address
of the new node and I think we're done! Here is my file for my node1:
default linux

label linux
kernel vmlinuz-2.6.24-19-server
append initrd=initrd.img-2.6.24-19-server \\
 nfsroot=192.168.2.1:/nodes/nfs/node1
1

Let's try it out!

There will be a couple bios changes before this will work – I'll take some pictures.

Here some of the BIOS updates I made:

Here are some pictures from after turning on the headless node.

There will probably be an error here, that’s OK – we have now made it easier on ourselves to fix the problem.

After the first boot, when Ubuntu tries to set up the networking, we will easily be able to modify instead of tying
it all in manually.

Now we can fix the network interface problem – Ubuntu automatically generates a list of udev rules for
networking cards based on the installation and MAC/hardware addresses. The problem is that we have different
MAC addresses for each card on each node!! So when the server tries to map out the ethernet cards with the
MAC addresses that were stored there when we installed, those Ethernet cards are not on node1. They’re
residing on the head node, and so we get a weird renaming error. So, I was getting eth1 renamed to eth6, etc...

Here goes the fix:
We will have to chroot over to node1 again from the Head Node.

We now change root over to that new partition (we can pretend like we're loaded on Linux on that partition and
begin to make some changes to the disk, even before the diskless node gets a chance to boot)

sudo chroot /nodes/nfs/node1 /bin/bash

I get a weird situation when I try to use tab completion, so I just type out the commands in full while chrooted.

The file is:

sudo vim /etc/udev/rules.d/70-persistent-net.rules

Remove the entries that were there from the head node when we first installed and replace them with the
addresses of the cards that you know are in that machine.
We need to make sure our network interfaces are set up properly, with the proper MAC addresses and driver
modules.

As an example, here is my node1 70-persisten-net.rules:

This file was automatically generated by the /lib/udev/write_net_rules
program run by the persistent-net-generator.rules rules file.

You can modify it, as long as you keep each rule on a single line.

PCI device 0x10ec:0x8167 (r8169)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:50:8d:bc:a2:32",
ATTR{type}=="1", KERNEL=="eth*", NAME="eth0"

#other realtek card.
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:50:8d:bc:a2:33",
ATTR{type}=="1", KERNEL=="eth*", NAME="eth1"

PCI device 0x1737:0x1032 (skge)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:0c:41:e5:9e:5e",
ATTR{type}=="1", KERNEL=="eth*", NAME="eth2"

PCI device 0x1737:0x1032 (skge)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:0c:41:e5:9e:a8",
ATTR{type}=="1", KERNEL=="eth*", NAME="eth3"

Now to installing LAM-MPI, JAVA, and MPIJAVA

I installed both of these packages, but I don’t think they’re having any effect, especially not mpich - - because I
explicitly compiled mpiJava with the LAM option instead of the default mpich.

JUST FOR DOCUMENTATION – NOT USEFUL
sudo apt-get install mpich-bin
sudo apt-get install lam-runtime

Now here’s the rub. I’ve done most of the work already in zipping up all the files I used, but here is how it goes.
First, I downloaded mpiJava -- http://www.hpjava.org/mpiJava.html
Then I downloaded LAM-MPI -- http://www.lam-mpi.org/
Then I got several version of the JDK – 1.4.2 , Java5, and Java6

The configure options for lam-mpi are in Jeff Larkin’s paper [page 16], though I didn’t use the Fortran compiler
option, so –without-fortran (or something like that) was passed as a parameter.

Unzip the java jdk and put it somewhere in /usr (I chose /usr/lib/jvm/)

Then, make sure you get these 3 things for building lam-mpi:

sudo apt-get install libc6-dev gcc g++

installing mpiJava only consists of passing in the jvm location (/usr/lib/jvm/jdk1.6.0_07 for me.)

you have to:

 ./configure –with-mpi=lam

or something along those lines

then once the configure is done you have to

sudo make

then the mpiJava/src/scripts/prunjava file (which actually runs the java MPI calls) has a parameter location for
the jvm (same as above). Also, I added in the –xms128 –xmx1024 command to increase the heap size though it
didn’t seem to matter for gsky tests.

To run gsky:

Edit StarMPI.java to change any of the parameters to what you want – this is
/home/jmoore/Desktop/mpiJava/examples/starArray/

There is a file in there called machines which looks like this:

HeadOfCluster cpu=4
Pc4 cpu=4
Pc8 cpu=4
Pc12 cpu=4

This has the hostname / cpu count for the entire cluster

Kick off LAM by running

lamboot –l machines

http://www.lam-mpi.org/

The –l parameter is crucial because otherwise it will complain about localhost resolving, and if you take localhost
out it will complain that localhost is not in there. Catch 22.

The –l says “hey stop being a moron and just use the /etc/hosts file that I provided for you.”

That command should come back without any errors, and probably only spit out one line of text
You can pass –v if you want verbose or –d if you want debug

Then edit RunTests script to make sure that the number of procs param nprocs is less than or equal to the
number of processors in the machines file. Ie, in this case if yours looks like mine above then it should be 16.
Then execute the runtests script by:

./RunTests

Viola.
If you have writeToFiles Boolean on then you should get some output in /tmp – if not, you’ll just get visual cues
that the software is running because …… will fill the screen and you’ll see the timing analysis breakdown when
the program is finished.

BOOTING NOTES

If you have problems booting the node just reboot it. Sounds cliché, sure, but whatever.
The third or fourth NIC occasionally decides that it wants to take control despite the fact that the node had to
boot from the first NIC and it also received DHCP on the first NIC.
Go figure.
Anyway, if you see
“SKGE” loading as a driver right before the node tries to get the NFS scripts, then just restart the node.
I call it skeegee, and I hate skeegee.

Reboot and you should get something like r#### -- that is good. The onboard NIC cards are RealTek or
something like that – so the r driver loading is what you want.

Reboot till that happens.

SSH KEY GENERATION

http://linuxproblem.org/art_9.html

use that.

If you’re adding nodes or logging in for the first time, make sure that you do login via ssh once before you kick off
lamboot. If any kind of message comes back from the server then it will error and you will get pissed.

There’s an error like “this mac address is new, are you sure you trust this source” or some shit like that.
Just say yes and it won’t happen again – and subsequently you can boot this node now with lamboot.

http://linuxproblem.org/art_9.html

